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Abstract — This paper presents a novel, fast optimiza-
tion technique that is especially suitable for the design of mi-
crowave filters. For the discretization of the structure, the
well established Finite Integration Technique (FIT) is used. A
recently published two step Model Order Reduction (MORe)
technique computes the poles and residuals of the structure’s
impedance matrix as well as its sensitivity to the geométry pa-
" rameters. The actual optimization is then performed in the
reduced order space of the poles and residuals. This signifi-
cantly reduces the number of full-wave simulation runs, that
is usually associated with the optimization of filters.

I. INTRODUCTION

The optimization of electromagnetic structures has re-
ceived significant attention in recent years. This is seen in
conjunction with the widespread availability of commercial
EM simulators which have become an indispensable tool in
the design of RF components and subsystems. However,
optimizing or fine-tuning a given structure is often prohib-
ited by the relatively long computation time of general-
purpose EM simulators. This is true in particular for more
complex structures with many variable geometry parame-
ters, which require a large number of optimization steps,

The situation is impaired when highly resonant struc-
tures, like filters, are to be optimized, as they impose ad-
ditional difficulties on the field simulators. Time domain
codes require long time iterations to reach steady state and
frequency domain codes suffer from reduced performance,
as a fine resolution of the frequency axis is necessary, in or-
der to capture sharp resonances, which can result in exces-
sively long computation times. Thus, using general-purpose
EM simulators directly in combination with optimization
routines is difficult in general.

A ‘possible solution to overcome the latter difficulty of
long computation times is the use of the Model Order Re-
duction (MORe) technique. In this approach the poles and
residuals of a structure are computed directly, which is par-
ticularly well suited for highly resonant structures. The
reduced number of poles and residuals are expressed as a
linearized function of the geometry parameters, with the
help of a sensitivity analysis. The actual optimization is
performed on the reduced order model. To ensure the va-
lidity of the reduced crder model, the model itself, as well
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as ils sensitivity with regard to the geometry parameters,

is updated after each optimization step. This results in .-

(nx + 1) - p + 1 full-wave simulator runs for ny geometry
parameters and p optimization steps.
In previous work an alternative technique has been em-

ployed successfully. This technique is based on the use of

a surrogate model to optimize filter structures. Also, here

it has been shown that the number of necessary simulator

runs can be significantly reduced if the electromagnetic fil-
ter structure is represented by a minimum prototype filter
network [1]. The elements of this prototype are determined
by matching its transfer function to that of the EM simu-
lated structure. Geomelry optimization is then performed
on the network parameters with occasional model updates
through EM simulation. A disadvantage of this approach is,
however, that the surrogate model of the structure has to be
determined in advance, which may not always be possible
and, therefore, the approach in [}] lacks universality.

The Model Order Reduction technique presented in the
following appears to be a very promising approach since it
is general and, at the same time, computationally efficiént.
A combination of this method and the method in [1] is cur-
rently being investigated. The methed requires the electro-
magnetic system to be described in its state-space. This is
achieved with the help of the Finite Integration Technique
(FIT, [2]); the procedure is briefly explained in section IL

"In section Iil. the MORe is explained in detail, Sections IV.

and V. deal with the optimization being performed on the
reduced parameter space of the poles and residuals. Finally,
the efficiency of the method is demonstrated by optimizing
a waveguide filter.

II. STATE-SPACE REPRESENTATION

In the Finite Integration Technique, the first two Maxwell
equations are discretized on two dual rectangular grids.
With the help of the discrete curl operator C, they are rep-
resented in the discrete domain according to [3] as
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with the electric and magnetic grid voltages & and h, re-
spectively, as well as the diagonal material matrices M.,
M,, and M,,. For a detailed introduction to the Finite Inte-
gration Technique see [2].

Expressing (1) and {2) in a single matrix equation directly
yields the system’s linear state-space representation
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with the state vector X = [ B7 HT ]T,- where £ and H
denote the grid voltages’ Laplace transforms and

e )
The port operators R, and L translate the port currents i
and the port voltages u into grid currents and voltages, re-
spectively. They are usually constructed by a 2D eigenvalue
solution of the port region. For an m-port structure that is
discretized with N mesh-nodes, A; is 6V x 6N, Ry is
6N x m and L; is m x 6/N. Equations (3) and (4) allow
easy expression of the system’s impedance matrix
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Z(s)=Li(sI-A;) 'Ry (3)

by solving (3) for X and placing it into (4).

If the system is loss-free, a curi-cur! formulation, pre-
sented in [4], can be applied. The result is a second degree
system
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halving the number of state variables, as only the electric
grid voltages are relevant. The matrix Ay becomes real
symmetric and is therefore at least semi definite, allowing

the proof of stability and passivity [5]. In this case, the

impedance matrix results in

Z(s) = sRY (s’ - A3) ' Ro, (8)
which can be brought into the canonical form
Z (s} = sRTE (s’1 - P) ' E"'R, ©)

with the help of the eigenvalue decomposition Az E = EP,
where the columns of E are the eigenvectors of Ay, and P
is a diagonal matrix, the elements of which are the quadratic
system poles. In (9), the inverse can then be computed eas-
ily, making it possible to express the impedance matrix in
terms of the system poles and residuals.
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with the quadratic poles px ‘and the residuals rijx =
[RgEL.k [Efle] b It is obvious that pr < 0 has to
yield for the system to be stable, as in this case, the poles
become conjugate imaginary.

III. MODEL ORDER REDUCTION

The System in (6) and (7) can be transformed into an
equivalent system with the help of a state-space coordi-
nate transformation by any non singular.real matrix V by .
simply replacing X = VX'. If V does not have full
column rank, certain state-space dimensions are neglected,
This fact can be exploited to approximate the system with
a reduced number of state variables. In the case of a sec-
ond degree system, the order of the new system would
be 2 rank (V). Therefore, it is straight forward to try
and find a basis for the system’s state-space in which as
many dimensions as possible can be neglected, provided
the system is only considered in a certain frequency band.
It has been shown in [6] that the choice of a Krylov sub-
space Ky, (B,y) = {y,By,B?%,...,B" !y}, is espe-
cially suitable for this purpose. If the columns of V form an
orthonormalized basis of X, ((sgl - Ag)_1 ,Rz), then
this system \ ‘
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has only a state-space dimension of n-m and the impedance
matrix

Z' (s)=sRIV (sI— VTA;V) ' VTR, (13)
is a Padé approximation of Z (3) in the sense of a Taylor
series around sg. If n-m < 3N, the inverse in (13) can be
computed with very little numerical effort.

For the construction of this basis, the common Arnoldi or
Lanczos algorithms (see [7] for definition) can be applied
but have to be implemented in a block-wise variant to be
able de deal with the m column Ra.

A major drawback of this approach is the necessity to
invert or factorize the large matrix (s3I — Az), which
may become prohibitive for many realistic problems due
to memory limits. Solving a linear system of equations
in every Amoldi/Lanczos step, however, severely impacts
the computation time, To avoid these problems, -V is con-
structed to be the basis of KC,, (A, R2), which corresponds
to a Taylor series expansion around s = oo. Such an ap-
proach does not need the inversion of a large matrix, how-
ever, at the expense of a much larger rank of V, i.¢., a higher
order system. .

In order to avoid the computation of a large inverse but
nevertheless benefit from a small order system, a combina-
tion of those two approaches has been introduced in [3]. In



a first step, the system order is reduced by a Lanczos pro-
cess, constructing 'V as a basis of K1 (Aa, Re), resulting
in a significantly smaller order system, which then is in-
verted and reduced again by an Armoldi process, construct-
ing V3 as a basis of Kno (y(sgl —VTA V) ,VITRQ)
10 benefit from the Taylor expansion around s3. In the first
" step, a symmetric variant of the Lanczos process is applied,
* as its short recursion limits the memory consumption. The
second step is performed by an Arnoldi process, as for those
relatively small matrices, memory consumption is no longer

an issue and the Amoldi process does not compute spurious

eigenvalues,

With the help of the eigenvalue decomposition in (9), the
poles and residuals can be computed for the reduced sys-
tem. Those poles and residuals are a subset of the total
number of poles and residuals neglecting the ones that have
no or very little influence on the system’s port behavior in a
certain frequency range.

IV.. COMPUTATION OF SENSITIVITY

For the optimization in the reduced order space, the de-
pendence of the system’s port behavior on ny geometry pa-
rameters is replaced by a lincarized local model. There-
fore, the sensitivity of the poles and residuals, with re-
spect to each geometry parameter, must be computed. Let
xg be the vector of the considered geometry parameters
for the imitial model with its p(;les in the vector pg, and
Ax; = Axe; the vector containing a slight variation
Agz; of the i-th parameter, then p; = p(xg+ Axi') is
the vector containing the poles of the model with the -
th parameter changed and Ap; = p; — p(xp) is the dif-
ference to the poles of the initial model. The sensitiv-
ity of the poles can be expressed in the matrix M
[ Ap1 Aps Apn, | diag (Ax)_l, where Ax =
Y_=, Ax;. This allows p (x) to be replaced locally by the
function

P (%) =M (x —xo) + po. (14)

The sensitivity of the residuals can be computed in the

same way. In general, this is required for every one of the

m? elements of the impedance matrix if the system is not
reciprocal, resulting in

iz (x) = Myy; (X — Xp) + roiy.

(15}

Computing only a subset of the original poles and residu-
als, the Arnoldi/Lanczos processes used in the model order
reduction do not guarantee that the same subset is found for
each set of parameters. In addition, the eigenvalue solver
used in (9) generally returns the eigenvalues in an arbitrary
order. Those two facts can make it difficult to find the poles
p;: for one set of parameters that correspond to those for
another set of parameters p; (i # ). In other words, p;
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is not only different from p; because it has been computed
for a different set of parameters, but also because it lacks
some poles, contains additional ones and is reordered. In
order to assure consistent poles and residuals, the spaces
spanned by the eigenvectors have to be projected onto each
other, exploiting the fact that the eigenvectors belonging to
corresponding poles are almost parallel.

V. OPTIMIZATION

" With the help of (14) and (15), the reduced number of
poles and residuals are expressed as a function of the ge-
cmetry parameters, Placing those into (10) yields the struc-
ture’s impedance matrix computed with very little numeri-
cal effort. After the conversion to a scattering matrix S, the
objective function e (S, S;) can be computed. The desired
target function S, may be the result of a standard filter syn-
thesis or simply a set of specifications. The objective func-
tion ¢ combines the computed scattering parameters with
the desired ones and returns a real scalar that can be min-
imized with the help of commercially available optimizers
such as a Sequential Quadratic Programming (SQP) methed
[8], yielding an optimum set of parameters x;.

As the poles’ and residuals’ — in general nonlinear — de-
pendence on the geometry parameters has been replaced
by a local model, one can not expect the set x; to be the
global optimum, Therefore, the process described above is
restarted with the parameters in x1 as the initial set.

The optimization algorithm can be described as follows:

compute pg and ry for the parameters xg
for k£ = 1 until goal attained
for i = 1 to number of parameters
‘compute pgk)
endfor
find corresponding poles and residuals
compute sensitivity matrices My and M,
minimize e (S, S4) and obtain optimum parameters X
compute py, and ry, for the parameters x;,
endfor

and rsk) for the parameters in x3 1+ Ax;

VI. 1IrIsS COUPLED WAVEGUIDE FILTER

In order to demonstrate the efficiency and validity of the
presented approach, a coaxial fed waveguide filter with iris
coupling presented in [9] shall be optimized. The consid-
ered geometry parameters are the inset and the height of the
coaxial probe as well as the lengths of the cavities and the
dimensions of the coupling irises as shown in Fig, 1.

As the filter consists of six cavities, a 6th order Cheby-
shev filter with a 0.5dB ripple in the passband, a center fre-
quency at 15.2GHz and a bandwidth of 0.6GHz has been
chosen as a target function. Fig. 2 shows the transmission



b]

X4 X

Fig. 1. Iris coupled waveguide filter
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Fig. 2. Transmission coefficient in three optimization steps

coefficient 8p; over frequency after each optimization step.
The objective function in this case has simply been the sum

over the quadratic differences between the absolute values

of the computed response and the designed filter response at
each frequency sample. Objective functions that also con-
sider the phase or weigh certain frequency bands differently
are expected to yield even better results and higher stability.
It can be seen already in the first step that the center fre-
quency and bandwidth requirements have been met and the
passband ripple is only 2dB. After the second step, the rip-
- ple has been decreased down to 1dB, and in the third step,
the requirements are fulfilled. To achieve this goal, the filter
has been discretized with roughly 60000 mesh-nodes, and
34 Model Order Reduction runs were necessary each taking
roughly two minutes on an off the shelf PC. The objective
function has been evaluated about 500 times, which means
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that reaching this goal with the help of a conventional opti-
mizer would have taken over 16 hours.

VII. CONCLUSIONS

A fast filter optimization scheme has been presented. It
has been shown, that a Model Order Reduction approach is
highly suitable for this kind of resonant structures. Com-
bined with the optimization in the reduced order space, it
can be applied o the optimization of filters in a very ef-
ficient way. An example has shown that the approach is
capable of significantly reducing the number of simulator
runs that is necessary to obtain the optimum result.
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