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Absfmct - This paper presents B novel, fast optimiza- 
tion techuique that is especially suitable for the design of mi- 
wowwe Was. For the discretlzatlon of the structure, the 
well established Finite Integration Technique (FIT) is used. A 
recently published two step Model Order Reduction (INORe) 
technique computes the poles and residuals of the structure’s 
impedance matrix BS well as its sensitivity to the geometry pu. 
ram&m The actual optimization is then performed in the 
reduced order space of the poles and residuals. This signlft- 
cantly reduces the number of full-wave simulation runs, that 
is usually associated with the optimization of filters. 

I. INTRODUCTION 

The optimization of electromagnetic structures has re- 
ceived significant attention in recent years. This is seen in 
conjunction with the widespread availability of commercial 
EM simulators which have become an indispensable tool in 
the design of RF components and subsystems. However, 
optimizing or fine-tuning a given structure is often prohib- 
ited by the relatively long computation time of general- 
purpose EM simulators. This is true in particular for more 
complex structures with many variable geometry pamme- 
ters, which require a large number of optimization steps. 

The situation is impaired when bighly resonant stmc- 
tures, like filters, are to be optimized, as they impose ad- 
ditional difficulties on the field simulators. Time domain 
codes require long time iterations to reach steady state and 
frequency domain codes suffer from reduced perfomwnce, 
as a fine resolution of the frequency axis is necessary, in or- 
der to capture sharp resonances, which can result in cxces- 
sively long computation times. Thus, using general-purpose 
EM simulaton directly in combination with optimization 
routines is difficult in general. 

A ‘possible solution to overcome the latter difficulty of 
long computation times is the use of the Model Order Re- 
duction (MORe) technique. In this approach the poles and 
residuals of a structure are computed directly, which is par- 
ticularly well suited for highly resonant structures. The 
reduced number of poles and residuals are expressed as a 
linearized function of the geometry parameters, with the 
help of a sensitivity analysis. The actual optimization is 
performed on the reduced order model. To ensure the va- 
lidity of the reduced order model, the model itself, as well 

as its sensitivity with regard to the geometry parameters, 
is updated after each optimization step. This results in 
(nx + 1) p + 1 full-wave simulator runs for n, geometry 
parameters and p optimization steps. 

In previous work an alternative technique has been em- 
ployed successfully. This technique is based on the use of 
a surrogate model to optimize filter structures. Also, here 
it has been shown that the number of necessary simulator 
runs can be significantly reduced if the electromagnetic til- 
ter structure is represented by a minimum prototype filter 
network [l]. The elements of this prototype are determined 
by matching its transfer function to that of the EM simu- 
lated structure. Geometry optimization is then performed 
on the network parameters with occasional model updates 
through EM simulation. A disadvantage of this approach is, 
however, that the surrogate model of the structure has to be 
determined in advance, which may not always be possible 
and, therefore, the approach in [l] lacks universality. 

The Model Order Reduction technique presented in the 
following appears to be a very promising approach since it 
is general and, at the same time, computationally efficient. 
A combination of this method and the method in [l] is cur- 
rently being investigated. The method requires the electro- 
magnetic system to be described in its state-space. This is 
achieved with the help of the Finite Integration Technique 
(FIT, [Z]); the procedure is briefly explained in section ll. 
In section Ill. the MORe is explained in detail. Sections IV. 
and V. deal with the optimization being performed on the 
reduced parameter space of the poles and residuals. Finally, 
the efficiency of the method is demonstrated by optimizing 
a waveguide filter. 

II. STATE-SPACE REPRESENTATION 

In the Finite Integration Technique, the first two Maxwell 
equations are discretized on two dual rectangular grids. 
With the help of the discrete curl operator C, they are rep- 
resented in the discrete domain according to [3] as 

M,6 = -M,i;+C%-7 (1) 
M,$ = -cs (2) 
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with the electric and magnetic grid voltages S and G, re- 
spectively, as well as the diagonal material matrices M,, 
M, and M,. For a detailed introduction to the Finite Inte- 
gration Technique see [Z]. 

Expressing (1) and (2) in a single matrix equation directly 
yields the system’s linear state-space representation 

SX = AlX+Rli (3) 
u = LIX (4) 

with the state vector X = [ ET HT IT. where e and ii 
denote the grid voltages’ Laplace transforms and 

The port operators R1 and L1 translate the port currents i 
and the port voltages u into grid currents and voltages, re- 
spectively. They are usually constructed by a 20 eigenvalue 
solution of the port region. For an m-port structure that is 
discretized with N mesh-nodes, Al is 6N x 6N, R1 is 
6N x m and L1 is m x 6N. Equations (3) and (4) allow 
easy expression of the system’s impedance matrix 

Z(s) = L1 (~1 - AJ1 RI (3 

by solving (3) for X and placing it into (4). 
If the system is loss-free, a curl-cwl formulation, pm- 

sented in [4], can be applied. The result is a second degree 
system 

szX = AzX+sRzi (‘5) 
u = RLfX, (7) 

halving the number of state variables, as only the electric 
grid voltages are relevant. The matrix A2 becomes real 
symmetric and is therefore at least semi definite, allowing 
the proof of stability and passivity [5]. In this case, the 
impedance matrix results in 

Z (s) = sR: (?I- AZ)-t Rz, (8) 

which can be brought into the canonical form 

Z (s) = sR;rE (?I- P)-’ E-‘R2 (9) 

with the help of the eigenvalue decomposition A2E = EP, 
where the columns of E are the eigenvectors of Az, and P 
is a diagonal matrix, the elements of which are the quadratic 
system poles. In (9), the inverse can then be computed eas- 
ily, making it possible to express the impedance matrix in 
terms of the system poles and residuals. 

r rllk “’ Tlrnk 

with the quadratic poles p,+ ‘and the residuals ruk = 
[%-El%, [E-‘R&. It is obvious that pk < 0 has to 
yield for the system to be stable, as in this case, the poles 
become conjugate imaginary. 

III. MODEL ORDER REDUCTION 

The System in (6) and (7) can be transformed into an 
equivalent system with the help of a state-space coordi- 
nate transformation by any non singular real matrix V by 
simply replacing X = VX’. If V does not have full 
column rank, certain state-space dimensions are neglected. 
This fact can be exploited to approximate the system with 
a reduced number of state variables. In the case of a sec- 
ond degree system, the order of the new system would 
be 2 rank(V). Therefore, it is straight forward to try 
and find a basis for the system’s state-space in which as 
many dimensions as possible can be neglected, provided 
the system is only considered in a certain frequency band. 
It has been shown in [6] that the choice of a Krylov sub- 
space KS (B, y) = {y, By, B2y,. , B+‘y}, is espe- 
cially suitable for this purpose. If the columns of V form an 
;n;;;tzlized basis of F ((sf1 - A?)-l, Rz), then 

.?X’ = VTA2VX’ + sVTRzi (11) 
u = R;VX’ (12) 

has only a state-space dimension of nm and the impedance 
matrix 

Z’ (8) = sRTV (~‘1~ VTA2V)-l V’Rz (13) 

is a Pad& approximation of Z (s) in the sense of a Taylor 
series around sf. If n m < 3N, the inverse in (13) can be 
computed with very little numerical effort. 

For the construction of this basis, tbe common Amoldi or 
Lanczos algorithms (see [7] for definition) can be applied 
but have to be implemented in a block-wise variant to be 
able do deal with the m column R2. 

A major drawback of this approach is the necessity to 
invert or factorize the large matrix (s$ ~ AZ), which 
may become prohibitive for many realistic problems due 
to memory limits. Solving a linear system of equations 
in every Amoldiiaoczos step, however, severely impacts 
the computation time. To avoid these problems, V is con- 
structed to be the basis of Ic, (As, R2). which corresponds 
to a Taylor series expansion around S; = w. Such an ap- 
proach does not need the inversion of a large matrix, how- 
ever, at the expense of a much larger rank of V, i.e., a higher 
order system. 

In order to avoid ihe computation of a large inverse but 
nevertheless benefit from a small order system, a combina- 
tion of those two approaches has been introduced in [3]. In 
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a first step, the system order is reduced by a Lanczos pro- 
cess, constructing VI as a basis of K,l (As, Rz), resulting 
in a significantly smaller order system, which then is in- 
verted and reduced again b 
ing Vz as a basis of Kn2 

i 

an Amoldi process, constmct- 
(s$ - VTA2V1)-‘, VTR2) 

to benefit from the Taylor expansion around sf. In the first 
step, a symmetric variant of the Lanczos process is applied, 
as its short recursion limits the memory consumption. The 
second step is performed by a” Amok% process, as for those 
relatively small matrices, memory consumption is no longer 
a” issue and the Amoldi process does not compute spurious 
eigenvalues. 

With the help of the eigenvalue decomposition in (9), the 
poles and residuals can be computed for the reduced sys- 
tem. Those p&s and residuals are a subset of the total 
number of poles and residuals neglecting the ones that have 
no or very little influence on the system’s port behavior in a 
certain frequency range. 

IV. COMPUTATION OF S~~NSITIVITY 

For the optimization in the reduced order space, the de- 
pendence of the system’s port behavior on & geomctq pa- 
mmeters is replaced by a linearized local model. There- 
fore, the sensitivity of the poles and residuals, with re- 
spect to each geometry parameter, must be computed. Let 
~0 be the vector of the considered geometry parameters 
for tbe initial model with its poles in the vector po, and 
Ax, = Az,e, the vector containing a slight variation 
As, of the i-th parameter, then p, = p (x0 + Ax.) is 
the vector containing the poles of the model with the i- 
th parameter changed and Ap, = p1 - p (x0) is the dif- 
ference to the poles of the initial model. The sensitiv- 
ity of the poles can be expressed in the matrix M, = 
[ API APZ .‘. Ap,,, ] diag (Ax)-I, where Ax = 
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C%, Ax,. This allows p(x) to be replaced locally by the 
function 

i, (4 = M, (x ~ xg) + PO. (14) 
The sensitivity of the residuals can be computed in the 

same way. In general, this is required for every one of the 
m2 elements of the impedance matrix if the system is not 
reciprocal, resulting in 

fij (4 = Mr,, (x ~ xo) + ml. (13 

Computing only a subset of the original poles and residu- 
als, the AmoldifLanczos processes used in the model order 
reduction do not guarantee that the same subset is foimd for 
each set of parameters. In addition, the eigenvalue solver 
used in (9) generally returns the eigenvalues in an arbitrary 
order. Those two facts can make it difficult to find the poles 
p, for one set of parameters that correspond to those for 
another set of parameters pj (i # j). In other words, p) 

is not only different from p$ because it has been computed 
for a different set of parameters, but also because it lacks 
some poles, contains additional ones and is reordered. In 
order to assure consistent poles and residuals, the, spaces 
spanned by the eigenvectors have to be projected onto each 
other, exploiting the fact that the eigenvectors belonging to 
corresponding poles are almost parallel. 

V. OPTIMIZATION 

With the help of (14) and (15), the reduced number of 
poles and residuals are expressed as a function of the ge- 
ometry parameters. Placing those into (10) yields the stmc- 
ture’s impedance matrix computed with very little numeri- 
cal &oft. After the conversion to a scattering matrix S, the 
objective function e (S, Sd) can be computed. ‘Ibe desired 
target function Sd may be the result of a standard filter syn- 
thesis or simply a set of specifications. The objective func- 
tion e combines the computed scattering parameters with 
the desired ones and returns a real scalar that can be min- 
imized with the help of commercially available optimizers 
such as a Sequential Quadratic Programming (SQP) m&cd 
[8], yielding a” optimum set of parameters x1. 

As the poles’ and residuals’ - in general nonlinear - de- 
pendence on the geometry parameters has been replaced 
by a local model, one can not expect the set x1 to be the 
global optimum. Therefore, the process described above is 
restarted with the parameters in x1 as the initial set. 

The optimization algorithm can be described as follows: 

compute po and 1.0 for the parameters xg 
for k = 1 until goal attained 

for i = 1 to number of parameters 
compute pr) and rik) for the parameters in xk-I+ Ax, 

endfor 
find corresponding poles and residuals 
compute sensitivity matrices M, and M, 
minimize e (S, S,J and obtain optimum parameters xk 
compute pie and rle for the parameters xk 

endfor 

VI. IRIS COUPLED WAVEGU~DE FILTER 

In order to demonstrate the efficiency and validity of the 
presented approach, a coaxial fed waveguide filter with iris 
coupling presented in [9] shall be optimized. The consid- 
ered geometry parameters are the inset and the height of the 
coaxial probe as well as the lengths of the cavities and the 
dimensions of the coupling irises as show” in Fig. I. 

As the filter consists of six cavities, a 6th order Cheby- 
shev filter with a OSdFt ripple in tbe passband, a center fre- 
quency at 15.2GHz and a bandwidth of 0.6GHz has been 
chosen as a target function. Fig. 2 shows the transmission 



Fig. 1. Iris coupled waveguide filter 

Fig. 2. Transmission coefficient in three optimization steps 

coefficient szl over frequency after each optimization step. 
The objective function in this case has simply been the sum 
over the quadratic differences between the absolute values 
of the computed response and the designed filter response at 
each frequency sample. Objective functions that also con- 
sider the phase or weigh certain frequency bands differently 
are expected to yield even better results and higher stability. 
It can be seen already in the first step that the center fre- 
quency and bandwidth requirements have been met and tbe 
passband ripple is only 2dB. After the second step, the rip- 
ple has been decreased down to IdB, and in the third step, 
the requirements are fulfilled. To achieve this goal, the filter 
has been discretized with roughly 6C&l mesh-nodes, and 
34 Model Order Reduction runs were necessruy each taking 
roughly two minutes on an off the shelf PC. The objective 
function has been evaluated about 500 times, which means 

that reaching this goal with the help of a conventional opti- 
mizer would have taken over I6 hours. 

VII. CONCLUSIONS 

A fast filter optimization scheme has been presented. It 
has been shown, that a Model Order Reduction approach is 
highly suitable for this kind of resonant structures. Com- 
bined with the optimization in the reduced order space, it 
can be applied to the optimization of filters in a very ef- 
ficient way. An example has shown that the approach is 
capable of significantly reducing the number of simulator 
runs that is necessary to obtain the optimum result. 

[II 

PI 

[31 

r41 

REFERENCES 

P. Harscher, E. Ofli, R. Vahldieck, and S. Amari, “EM- 
simulator based parameter extraction and optimiza- 
tion technique for microwave and millimeter wavk fil- 
ters,” in Micmwave Symposium Digest, pp. I 113-l 116, 
2002. 
T. Weiland, “Time domain electro-magnetic field com- 
putations with finite difference methods,” Int. J. Num. 
Modeling, vol. 9, pp. 295-319, 1996. 
T. Wittig, I. Munteanu, R. Schuhmann, and T. Wei- 
land, “Two step lanczos algorithm for model order re- 
duction,” IEEE Transactions on Magnetics, vol. 38, 
pp. 673-676, March 2002. 
T. Wittig, I. Munteanu, R. Schuhmann, and T. W&and, 
“Model order reduction and equivalent circuit genera- 
tion for a FIT curl-curl formulation:’ in Pmt. of ACE 
Confirence, pp. 25&272,2002. 

[5] B. D. 0. Anderson and S. Vongpanitlerd, Network 
Analysis and Synthesis. Englewood Cliffs, New Jersey: 
Prentice-Hall, Inc., 1973. 

[6] P. Feldmaan and R. W. Freund, “Interconnect-delay 
computation and signal-integrity verification using the 
SymPVL algorithm: in Proc. 1997 Eur. Conf Circuit 
Theory amiDesign, pp. 408413,1997. 

[7] J. H. Wilkinson, The Algebraic Eigenvalue Problem. 
Oxford: Oxford University Press, 1965. 

[8] R. Fletcher and M. Powel, “A rapidly convergent de- 
scent, method for minimization:’ Computer Jouml, 
vol. 6, pp. 163-168, 1963. 

[9] J.-F. Liang, H.-C. Chang, and K. A. Z.&i, “Coax- 
ial probe modeling in waveguides and cavities,” IEEE 
Transactions on Microwave Theory and Techniques, 
vol. 40, pp. 2172-2180, December 1992. 

24 


	MTT025
	Return to Contents


